
Welcome to Linux
Lecture 1.1

Some history

• 1969 - the Unix operating system by Ken Thompson and Dennis
Ritchie

• Unix became widely adopted by academics and businesses

• 1977 - the Berkeley Software Distribution (BSD) by UC Berkeley.
A lawsuit USL v. BSDi.

• 1983 – the GNU project by Richard Stallman - a free UNIX-like
operating system (GPL). GNU incomplete – no kernel

• 1991- Linus Torvalds, an undergraduate student from Finland,
began a “just for fun” project that later became the Linux
kernel.

Linux operating system

• Open-source

• Written in portable yet highly efficient
language

• Built-in networking

• Built-in multitasking

• Rich software development environment

• Open interface to kernel

• Powerful and flexible CLI (command-line
interface)

“UNIX is very simple, it just needs a genius to understand its
simplicity”

Dennis Ritchie,
creator of C programming language

Scope for the first 2 weeks

• Get familiar with Linux

• Use existing utilities with CLI

• Shell programming

Scope for the rest of the course

• Develop our own utilities (tools) in a Unix-style

• Write application programs which interact with Linux kernel

• All this using C programming language

Linux structure

Tools: We are
interested in
these

Linux kernel

• Process creation, and scheduling multiple processes

• Memory management: allocation, release

• File system on disk: abstraction over physical disk blocks

• Access to I/O devices: device drivers

• Networking: routing and exchange of messages

• Interface for user programs to perform requests to kernel:
system calls

Linux file system

ls -li

File abstraction

• “Everything is a file.”

• Unified file interface = open, read, write, close for

• regular files

• directories

• devices

• video

• keyboard

• network

Index node - inode

• The data for each file is managed by an array of on-disk data
structures called inodes

• One inode is allocated for each file and each directory

• Unix inodes have unique numbers, not names, and it is
these numbers that are kept in directories alongside the
names.

ls -i

Typical Linux file hierarchy

• Everything starts in the “root” directory

• A directory is a file that contains directory entries:

pairs of (child name, inode).

================ ==========================

R O O T <[etc,bin,home] >-- ROOT directory has no name!
/ | \ / | \

etc bin home [passwd] [ls,rm] [user1]
| / \ \ | / \ |
| ls rm user1 | <data> <data> [.bashrc]
| | | |

passwd .bashrc <data> <data>

What is stored in inodes -
example

i directory What is stored

8 top [world-9, …]

9 world [lang-10, food-11]

10 lang [ENG-12, FRA-16, RUS-17]

11 food [CHN-13, ITA-18]

12 ENG [letter1-14]

13 CHN [noodles-15]

14 letter1 File data blocks

15 noodles File data blocks

(Top)

world

lang food

ENG FRA RUS

letter1 noodles

CHN ITA

File vs. directory inodes

• File inode – location of data

• Directory inode – location of (name, inode) pairs for child
directories

• You must use the inode number from the directory to find
the inode on disk to read its attribute information; reading
the directory only tells you the name and inode number.

What is NOT stored in inodes?

i directory What is stored

8 top [world-9, …]

9 world [lang-10, food-11]

10 lang [ENG-12, FRA-16, RUS-17]

11 food [CHN-13, ITA-18]

12 ENG [letter1-14]

13 CHN [noodles-15]

14 letter1 File data blocks

15 noodles File data blocks

(Top)

world

lang food

ENG FRA RUS

letter1 noodles

CHN ITA

The name of a file is NOT
stored in file inode – it is stored
in the parent directory

Noname files

• The name and inode number pair in a directory is the only
connection between a name and the thing it names on disk

• If a directory is damaged, the names of the things are lost
and inodes become “orphan”

• The things themselves may be undamaged. You can run a
file system recovery program such as fsck to recover the
data (but not the names)

What else is stored in inodes

In addition to a list of pointers to the disk blocks:

• The attributes of the file or directory itself (permissions,
size, access/modify times, etc.); but, not the name of the file
or directory:

The names are kept separately, in parent directories

• Directory inode stores two additional (name, inode) pairs:

Itself: . → inode

Parent: .. → inode

Multiple names to the same file:
hard links
• An entry in a directory file which specifies a pair of (name,

inode) is called a hard link.

• There can be several hard links to the same physical file!

ln bar foo

ls -li

Hard link example

i directory What is stored

11 food [CHN-13, ITA-18]

12 ENG [letter1-14]

13 CHN [noodles-15]

14 letter1 File data blocks

15 noodles File data blocks

16 …

17 …

18 ITA [pasta-15]

(Top)

world

lang food

ENG FRA RUS

letter1 noodles

CHN ITA

cd world/food

ln CHN/noodles ITA/pasta

pasta

2 names of the same file

Tracing inodes example: /home/alex/foobar

From: http://teaching.idallen.com/cst8207/13w/notes/450_file_system.html

Directories cannot have hard
links!

• Files may have many names ("links") - but directories can

not!

• Each directory inode is allowed to appear once in exactly

one parent directory and no more.

• Every sub-directory only has one parent directory, and the

special name ".." (dot dot) always refers unambiguously to

its unique parent directory

• This directory linking restriction prevents loops and cycles in

the file system tree

ln vs. ln –s

• Storage Space: no new inodes with hard links - in soft links we

create a new inode to store the path to the file

• Performance: directly accessing the disk pointer instead of going

through the path stored in soft link file.

• Renaming (mv) target file: the hard link will still work, but soft

link will point to the previous file location.

• Redundancy: with hard link, the data is safe, until all the links to

the file are deleted - in soft link, you will lose the data if the

master instance of the file is deleted.

Programmable shell
Running built-in utilities

Shells

• Special-purpose programs designed to read commands typed

by the user and shell scripts, interpret them, and execute

appropriate programs in response

• Many shells, i.e.:

• Bourne shell (SH)

• Bourne again shell (BASH)

We are
using this

How the shell is collaborating with the
kernel

• Shell:

• accepts command names and arguments as input

• finds the executable

• interprets the arguments

• loads an executable into memory and hands it off to the
OS to run.

• Kernel:

• starts the process of executing the program

How does shell know where to
find an executable
• PATH variable: List of directories to be consulted when

looking up commands specified without path names.

• E.g. you type "cat", it execs "/bin/cat". It finds it by looking
through the path, which is a list of directories including /bin.

echo "$PATH"

/bin:/usr/bin:.

PATH=$PATH:/path/to/dir1; export PATH

To add permanently:

echo 'export PATH=$PATH:/usr/local/bin' >> ~/.bash_profile

Current
directory

Globbing

• Globbing - process of expanding a non-specific file name containing

a wildcard character into a set of specific file names that exist

• Standard wildcards (globbing patterns)

• * matches any number of any character

• ? matches any one character

• [range] :

• m[a,o,u]m, m[a-d]m

• {} matches at least one (or):

• cp {*.doc,*.pdf} ~

• [!] excluding

• rm myfile[!9]

Sharing files:
permissions

Users belong to user groups (up
to 16-32 groups max)
wolf:~% groups mgbarsky

mgbarsky : instrs csc209h csc343h csc443h cs209hi cs343hi
cs443hi

Permissions as numbers
Number Octal Representation Ref

0 No permission ---

1 Execute permission --x

2 Write permission -w-

3
Execute and write permission: 1 (execute) + 2
(write) = 3

-wx

4 Read permission r--

5
Read and execute permission: 4 (read) + 1
(execute) = 5

r-x

6
Read and write permission: 4 (read) + 2 (write)
= 6

rw-

7
All permissions: 4 (read) + 2 (write) + 1
(execute) = 7

rwx

chmod

• chmod 755 <filename>
– 3 numbers between 0 and 7, the octal value for that category of

user

– Quiz — what is the command to set the permissions of the file
classlist to be world readable but writeable only by the file
owner and members of the group.

• Or using:
– chmod u+rwx

– chmod go-x

– chmode a=x

– adds or removes permissions for those categories of users

-rwxr-xr-x

Setting permissions

File Permissions

chmod (change mode)

• Changes the permissions (mode) on an existing inode (file,
directory, etc.)

ls -lid (list structure, long version, inode, directory)

• Shows the permissions of an inode

Output redirection

• If the notation > file is appended to any command that
normally writes its output to standard output, the output of
that command will be written to file:

who > users

Input redirection

• The commands that normally take their input from
standard input can have their input redirected from
a file:

wc -l users

wc -l < users

Processes

Kernel starts a process for each program

To see all the processes:

ps

PID TTY TIME CMD

26357 pts/5 00:00:00 tcsh

26558 pts/5 00:00:00 bash

32624 pts/5 00:00:00 ps

Process groups and pipelining

• Connect processes, by letting the standard output of one
process feed into the standard input of another. That
mechanism is called a pipe.

• Connecting simple processes in a pipeline allows to perform
complex tasks without complex programs.

$ls -l | sort -k5n | less

Displays files in current directory sorted by file size

grep

• Searching plain-text data sets for lines matching a regular
expression.

• Main uses:

• grep –x matches entire line

• grep –v matches all lines which do not contain a pattern

• grep ^pattern – matches lines which start with ‘pattern’

Summary: your Linux toolbox

• Linux file system: inodes, hard and soft links

• File permissions

• Working with files

• Working with file contents

• I/O redirection

• Pipelining

